Differentiate function 3e^(-8/5x) With Steps

Answer

calculus infography

Answer

Differentiation of a function 3e^{-8/5x}

When differentiating a function with respect to x, it is important to use the rules of differentiation to find the derivative. In this case, we are tasked with differentiating the function 3e^{-8/5x} with respect to  x .

To differentiate the function 3e^{-8/5x} with respect to x, we will use the chain rule of differentiation. The chain rule states that if we have a function g(u) and a function f(x) where u is a function of x, then the derivative of g(f(x)) with respect to x is g'(f(x)) * f'(x).

Given that our function is 3e^{-8/5x}, we can see that the function g(u) = 3eu with u = -8/5x . Applying the chain rule, the derivative of 3e^{-8/5x} with respect to x is:

\frac{d}{dx} (3e^{-\frac{8}{5}x}) = 3 \cdot \frac{d}{dx} e^{-\frac{8}{5}x}

We then find the derivative of e^{-8/5x}[with respect to x by using the derivative of e^u, which is e^u * du/dx. Therefore:

\frac{d}{dx} e^{-\frac{8}{5}x} = e^{-\frac{8}{5}x} \cdot (-\frac{8}{5}) = -\frac{8}{5}e^{-\frac{8}{5}x}

Substituting this back into the original expression, we get:

\frac{d}{dx} (3e^{-\frac{8}{5}x}) = 3 \cdot \left(-\frac{8}{5}e^{-\frac{8}{5}x}\right) = -\frac{24}{5}e^{-\frac{8}{5}x}

Therefore, the derivative of 3e^{-8/5x} with respect to x is -24/5e^{-8/5x}.

You can also differentiate coefficient of x in the following form

Common functions

7

6x

x^{1/2}

2x^2

Exponential functions

-e^{-\frac{12}{7x}}

-3e^{2x}

Trigonometric functions

4 \sin (x)

-\cos(3x)

Logarithmic functions

4In9x

1. Find the derivative of the function -2x^{-\frac{1}{2}}.

Solution:

To find the derivative of a function in the form f(x) = ax^n, where a and n are constants, we use the power rule. The derivative is given by:

f'(x) = n \cdot a \cdot x^{n-1}.

Applying this rule to the given function, we have:

f'(x) = -\frac{1}{2} \cdot -2 \cdot x^{-\frac{1}{2}-1}</p><p>= x^{-\frac{3}{2}}.

Therefore, the derivative of -2x^{-\frac{1}{2}} is

x^{-\frac{3}{2}}.

2. Determine the derivative of e^{x}.

Solution:

The derivative of e^{x} is itself, as the derivative of

e^{x} is e^{x}.

This is a unique property of the exponential function e^{x}.

Therefore, the derivative of e^{x} is

e^{x}.

3. Calculate the derivative of 4\cos(9x).

Solution:
By applying the chain rule and derivative of cosine function, we have:

f'(x) = -4 \cdot 9 \sin(9x) = -36 \sin(9x).

Therefore, the derivative of 4\cos(9x) is

-36 \sin(9x).

4. Find the derivative of -3e^{\frac{8}{5}x}.

Solution:

Similarly to the derivative of e^{x}, the derivative of e^{\frac{8}{5}x} is itself times the constant \frac{8}{5}:

f'(x) = -3 \cdot \frac{8}{5} e^{\frac{8}{5}x} = -\frac{24}{5} e^{\frac{8}{5}x}.

Therefore, the derivative of -3e^{\frac{8}{5}x} is

-\frac{24}{5} e^{\frac{8}{5}x}.

5. Differentiate the function 4\sin(2x).

Solution:

Using the chain rule and derivative of the sine function, we get:

f'(x) = 4 \cdot 2 \cos(2x)= 8 \cos(2x).

Therefore, the derivative of 4\sin(2x) is

8\cos(2x).

1. \frac{d}{dx}\left(-2x^{-\frac{1}{2}}\right) = x^{-\frac{3}{2}}

2. \frac{d}{dx}\left(-e^x\right) = -e^x

3. \frac{d}{dx}\left(4\cos(9x)\right) = -36\sin(9x)

4. \frac{d}{dx}\left(-3e^{\frac{8}{5}x}\right) = -\frac{24}{5}e^{\frac{8}{5}x}

5. \frac{d}{dx}\left(5\ln x\right) = \frac{5}{x}

6. \frac{d}{dx}\left(2x^3\right) = 6x^2

7. \frac{d}{dx}\left(9e^{-2x}\right) = -18e^{-2x}

8. \frac{d}{dx}\left(7\sin(2x)\right) = 14\cos(2x)

9. \frac{d}{dx}\left(-4e^{5x}\right) = -20e^{5x}

10. \frac{d}{dx}\left(3\ln(4x)\right) = \frac{3}{x}

11. \frac{d}{dx}\left(-5\cos(3x)\right) = 15\sin(3x)

12. \frac{d}{dx}\left(6e^{-4x}\right) = -24e^{-4x}

13. \frac{d}{dx}\left(2\sin(5x)\right) = 10\cos(5x)

14. \frac{d}{dx}\left(8e^{2x}\right) = 16e^{2x}

15. \frac{d}{dx}\left(4\ln(3x)\right) = \frac{4}{x}

Previous Lesson
Next Lesson

Sample Expressions

For best result write

1 as 1

-1 as -1

x as x

-x  as -x

x^{1/2}  as x^(1/2)

x^{-1/2} as x^-(1/2)

-x^{1/2}  as - x^(1/2)

-x^{-1/2}  as - x^-(1/2)

-2x as -2x

2x^2  as 2x^2

-2x^2  as -2x^2

2x^{1/2} as 2x^(1/2)

2x^{-1/2} as 2x^-(1/2)

-2x^{1/2}  as -2x^(1/2)

-2x^{-1/2}  as -2x^-(1/2)

2x^{-1} as 2x^-1

-2x^{-1}  as -2x^-1

-x^{-1}  as -x^-1

x^{-1} as x^-1

x^2 as x^2

-x^2 -x^2

-x^{-2} -x^-2

2x as 2x

e^x as e^x

-e^x as -e^x

-e^{-x} as -e^-x

e^{2x} as e^(2x)

e^{-2x} as  e^-(2x)

-e^{2x} as -e^-(2x)

-e^{-2x} as e^-(2x)

e^{8/5x} as e^(8/5x)

e^{-8/5x} as e^-(8/5x)

-e^{8/5x} as -e^-(8/5x)

-e^{-8/5x} as -e^-(8/5x)

3e^x as 3e^x

3e^{-x} as 3e^-x

-3e^x as -3e^x

-3e^{-x} as -3e^-x

3e^{2x} as 3e^(2x)

3e^{-2x} as 3e^-(2x)

-3e^{2x} as -3e^(2x)

-3e^{-2x} as -3e^(-2x)

3e^{8/5x} as 3e^(8/5x)

3e^{-8/5x} as 3e^(-8/5x)

-3e^{8/5x} as -3e^(8/5x)

-3e^{-8/5x} as -3e^(-8/5x)

-\cos(x) as -cos(x)

4\sin(x) as 4 sin(x)

-\tan(3x) - tan(3x)

See more View less

Calculus Archives

Useful Calculus links

Integral Calculus Playground
The "Integral Calculus Playground" is a sophisticated educational tool designed to help users practice...
Differentiate 5 With Steps
Learn about the concept of differentiation with constant 5 and how it can be applied in various mathematical...
Differential Calculus Playground
The "Differential Calculus Playground" is a valuable educational tool that allows users to test their...
Differentiate x^(1/2) With Steps
When you differentiate the function √x or x^(1/2), we use the power rule of differentiation. Let y =...
Classroom: Differentiation function of a function
To differentiate a function of a function, also known as composite functions, you can use the chain rule....
Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock

Calculus playground

Answer

Answer

Order of differentiation