Differentiate x^(1/2) With Steps

Answer

calculus infography

Answer

Differentiation of a √x

When we differentiate the function √x or x^(1/2), we use the power rule of differentiation.

Let y = √x or x^(1/2) , then we can rewrite y as y = x^(1/2).

To find the derivative of y with respect to x, we use the power rule which states that if y = x^n, then the derivative dy/dx = nx^(n-1).

Applying this rule, we have y' = 1/2  \cdot x^{- \frac{1}{2}}.

Therefore, the derivative of √x or x^{\frac{1}{2}}is 1/(2√x) or 1/(2x^\frac{1}{2}).

This means that the rate of change of the function √x is inversely proportional to 2 times the square root of x.

You can also differentiate coefficient of x in the following form

Common functions

7

6x

x^{1/2}

2x^2

Exponential functions

-e^{-\frac{12}{7x}}

-3e^{2x}

Trigonometric functions

4 \sin (x)

-\cos(3x)

Logarithmic functions

4In9x

 

1. Find the derivative of the function -2x^{-\frac{1}{2}}.

Solution:

To find the derivative of a function in the form f(x) = ax^n, where a and n are constants, we use the power rule. The derivative is given by:

f'(x) = n \cdot a \cdot x^{n-1}.

Applying this rule to the given function, we have:

f'(x) = -\frac{1}{2} \cdot -2 \cdot x^{-\frac{1}{2}-1}</p><p>= x^{-\frac{3}{2}}.

Therefore, the derivative of -2x^{-\frac{1}{2}} is

x^{-\frac{3}{2}}.

2. Determine the derivative of e^{x}.

Solution:

The derivative of e^{x} is itself, as the derivative of

e^{x} is e^{x}.

This is a unique property of the exponential function e^{x}.

Therefore, the derivative of e^{x} is

e^{x}.

3. Calculate the derivative of 4\cos(9x).

Solution:
By applying the chain rule and derivative of cosine function, we have:

f'(x) = -4 \cdot 9 \sin(9x) = -36 \sin(9x).

Therefore, the derivative of 4\cos(9x) is

-36 \sin(9x).

4. Find the derivative of -3e^{\frac{8}{5}x}.

Solution:

Similarly to the derivative of e^{x}, the derivative of e^{\frac{8}{5}x} is itself times the constant \frac{8}{5}:

f'(x) = -3 \cdot \frac{8}{5} e^{\frac{8}{5}x} = -\frac{24}{5} e^{\frac{8}{5}x}.

Therefore, the derivative of -3e^{\frac{8}{5}x} is

-\frac{24}{5} e^{\frac{8}{5}x}.

5. Differentiate the function 4\sin(2x).

Solution:

Using the chain rule and derivative of the sine function, we get:

f'(x) = 4 \cdot 2 \cos(2x)= 8 \cos(2x).

Therefore, the derivative of 4\sin(2x) is

8\cos(2x).

1. \frac{d}{dx}\left(-2x^{-\frac{1}{2}}\right) = x^{-\frac{3}{2}}

2. \frac{d}{dx}\left(-e^x\right) = -e^x

3. \frac{d}{dx}\left(4\cos(9x)\right) = -36\sin(9x)

4. \frac{d}{dx}\left(-3e^{\frac{8}{5}x}\right) = -\frac{24}{5}e^{\frac{8}{5}x}

5. \frac{d}{dx}\left(5\ln x\right) = \frac{5}{x}

6. \frac{d}{dx}\left(2x^3\right) = 6x^2

7. \frac{d}{dx}\left(9e^{-2x}\right) = -18e^{-2x}

8. \frac{d}{dx}\left(7\sin(2x)\right) = 14\cos(2x)

9. \frac{d}{dx}\left(-4e^{5x}\right) = -20e^{5x}

10. \frac{d}{dx}\left(3\ln(4x)\right) = \frac{3}{x}

11. \frac{d}{dx}\left(-5\cos(3x)\right) = 15\sin(3x)

12. \frac{d}{dx}\left(6e^{-4x}\right) = -24e^{-4x}

13. \frac{d}{dx}\left(2\sin(5x)\right) = 10\cos(5x)

14. \frac{d}{dx}\left(8e^{2x}\right) = 16e^{2x}

15. \frac{d}{dx}\left(4\ln(3x)\right) = \frac{4}{x}

Previous Lesson
Next Lesson

Sample Expressions

For best result write

1 as 1

-1 as -1

x as x

-x  as -x

x^{1/2}  as x^(1/2)

x^{-1/2} as x^-(1/2)

-x^{1/2}  as - x^(1/2)

-x^{-1/2}  as - x^-(1/2)

-2x as -2x

2x^2  as 2x^2

-2x^2  as -2x^2

2x^{1/2} as 2x^(1/2)

2x^{-1/2} as 2x^-(1/2)

-2x^{1/2}  as -2x^(1/2)

-2x^{-1/2}  as -2x^-(1/2)

2x^{-1} as 2x^-1

-2x^{-1}  as -2x^-1

-x^{-1}  as -x^-1

x^{-1} as x^-1

x^2 as x^2

-x^2 -x^2

-x^{-2} -x^-2

2x as 2x

e^x as e^x

-e^x as -e^x

-e^{-x} as -e^-x

e^{2x} as e^(2x)

e^{-2x} as  e^-(2x)

-e^{2x} as -e^-(2x)

-e^{-2x} as e^-(2x)

e^{8/5x} as e^(8/5x)

e^{-8/5x} as e^-(8/5x)

-e^{8/5x} as -e^-(8/5x)

-e^{-8/5x} as -e^-(8/5x)

3e^x as 3e^x

3e^{-x} as 3e^-x

-3e^x as -3e^x

-3e^{-x} as -3e^-x

3e^{2x} as 3e^(2x)

3e^{-2x} as 3e^-(2x)

-3e^{2x} as -3e^(2x)

-3e^{-2x} as -3e^(-2x)

3e^{8/5x} as 3e^(8/5x)

3e^{-8/5x} as 3e^(-8/5x)

-3e^{8/5x} as -3e^(8/5x)

-3e^{-8/5x} as -3e^(-8/5x)

-\cos(x) as -cos(x)

4\sin(x) as 4 sin(x)

-\tan(3x) - tan(3x)

See more View less

Calculus Archives

Useful Calculus links

Differentiate tan(3x) With Steps
To differentiate the function tan(3x) with respect to x, we must use the chain rule. The derivative of...
Classroom: Differentiation of a Product
CalculusPopCalculusPop...
Differentiate 4 sin(x)With Steps
To differentiate the function 4 sin(x) with respect to x, we apply the rules of differentiation. The...
Differentiate function 3e^(-8/5x) With Steps
To differentiate function 3e^(-8/5x) with respect to x, we will use the chain rule of differentiation....
Differentiate - x^(1/2)
To differentiate - x^{1/2} with respect to x, we can use the power rule of differentiation. This rule...

Calculus playground

Answer

Answer

Order of differentiation