Differentiate -1/√x With Steps

Answer

calculus infography

Answer

Differentiation of a -\frac{1}{\sqrt{x}}

-\frac{1}{\sqrt{x}}

To differentiate the given expression with respect to x, we use the power rule for differentiation.

\frac{d}{dx}(-\frac{1}{\sqrt{x}}) = -\frac{d}{dx}(x^{-1/2})

Now, applying the power rule, we get:

= -(-\frac{1}{2}x^{-3/2})

Simplifying further, we get:

= \frac{1}{2x^{3/2}}

Therefore, the derivative of -1/√x with respect to x is \frac{1}{2x^{3/2}} .

 

This calculus calculator also solves problem in the following form

Common functions

7

6x

x^{1/2}

2x^2

Exponential functions

-e^{-\frac{12}{7x}}

-3e^{2x}

Trigonometric functions

4 \sin (x)

-\cos(3x)

Logarithmic functions

4In9x

 

1. Find the derivative of the function -2x^{-\frac{1}{2}}.

Solution:

To find the derivative of a function in the form f(x) = ax^n, where a and n are constants, we use the power rule. The derivative is given by:

f'(x) = n \cdot a \cdot x^{n-1}.

Applying this rule to the given function, we have:

f'(x) = -\frac{1}{2} \cdot -2 \cdot x^{-\frac{1}{2}-1}</p><p>= x^{-\frac{3}{2}}.

Therefore, the derivative of -2x^{-\frac{1}{2}} is

x^{-\frac{3}{2}}.

2. Determine the derivative of e^{x}.

Solution:

The derivative of e^{x} is itself, as the derivative of

e^{x} is e^{x}.

This is a unique property of the exponential function e^{x}.

Therefore, the derivative of e^{x} is

e^{x}.

3. Calculate the derivative of 4\cos(9x).

Solution:
By applying the chain rule and derivative of cosine function, we have:

f'(x) = -4 \cdot 9 \sin(9x) = -36 \sin(9x).

Therefore, the derivative of 4\cos(9x) is

-36 \sin(9x).

4. Find the derivative of -3e^{\frac{8}{5}x}.

Solution:

Similarly to the derivative of e^{x}, the derivative of e^{\frac{8}{5}x} is itself times the constant \frac{8}{5}:

f'(x) = -3 \cdot \frac{8}{5} e^{\frac{8}{5}x} = -\frac{24}{5} e^{\frac{8}{5}x}.

Therefore, the derivative of -3e^{\frac{8}{5}x} is

-\frac{24}{5} e^{\frac{8}{5}x}.

5. Differentiate the function 4\sin(2x).

Solution:

Using the chain rule and derivative of the sine function, we get:

f'(x) = 4 \cdot 2 \cos(2x)= 8 \cos(2x).

Therefore, the derivative of 4\sin(2x) is

8\cos(2x).

1. \frac{d}{dx}\left(-2x^{-\frac{1}{2}}\right) = x^{-\frac{3}{2}}

2. \frac{d}{dx}\left(-e^x\right) = -e^x

3. \frac{d}{dx}\left(4\cos(9x)\right) = -36\sin(9x)

4. \frac{d}{dx}\left(-3e^{\frac{8}{5}x}\right) = -\frac{24}{5}e^{\frac{8}{5}x}

5. \frac{d}{dx}\left(5\ln x\right) = \frac{5}{x}

6. \frac{d}{dx}\left(2x^3\right) = 6x^2

7. \frac{d}{dx}\left(9e^{-2x}\right) = -18e^{-2x}

8. \frac{d}{dx}\left(7\sin(2x)\right) = 14\cos(2x)

9. \frac{d}{dx}\left(-4e^{5x}\right) = -20e^{5x}

10. \frac{d}{dx}\left(3\ln(4x)\right) = \frac{3}{x}

11. \frac{d}{dx}\left(-5\cos(3x)\right) = 15\sin(3x)

12. \frac{d}{dx}\left(6e^{-4x}\right) = -24e^{-4x}

13. \frac{d}{dx}\left(2\sin(5x)\right) = 10\cos(5x)

14. \frac{d}{dx}\left(8e^{2x}\right) = 16e^{2x}

15. \frac{d}{dx}\left(4\ln(3x)\right) = \frac{4}{x}

Previous Lesson
Differentiate X With Steps
Next Lesson
Differentiate x^(1/2) With Steps

Sample Expressions

For best result write

1 as 1

-1 as -1

x as x

-x  as -x

x^{1/2}  as x^(1/2)

x^{-1/2} as x^-(1/2)

-x^{1/2}  as - x^(1/2)

-x^{-1/2}  as - x^-(1/2)

-2x as -2x

2x^2  as 2x^2

-2x^2  as -2x^2

2x^{1/2} as 2x^(1/2)

2x^{-1/2} as 2x^-(1/2)

-2x^{1/2}  as -2x^(1/2)

-2x^{-1/2}  as -2x^-(1/2)

2x^{-1} as 2x^-1

-2x^{-1}  as -2x^-1

-x^{-1}  as -x^-1

x^{-1} as x^-1

x^2 as x^2

-x^2 -x^2

-x^{-2} -x^-2

2x as 2x

e^x as e^x

-e^x as -e^x

-e^{-x} as -e^-x

e^{2x} as e^(2x)

e^{-2x} as  e^-(2x)

-e^{2x} as -e^-(2x)

-e^{-2x} as e^-(2x)

e^{8/5x} as e^(8/5x)

e^{-8/5x} as e^-(8/5x)

-e^{8/5x} as -e^-(8/5x)

-e^{-8/5x} as -e^-(8/5x)

3e^x as 3e^x

3e^{-x} as 3e^-x

-3e^x as -3e^x

-3e^{-x} as -3e^-x

3e^{2x} as 3e^(2x)

3e^{-2x} as 3e^-(2x)

-3e^{2x} as -3e^(2x)

-3e^{-2x} as -3e^(-2x)

3e^{8/5x} as 3e^(8/5x)

3e^{-8/5x} as 3e^(-8/5x)

-3e^{8/5x} as -3e^(8/5x)

-3e^{-8/5x} as -3e^(-8/5x)

-\cos(x) as -cos(x)

4\sin(x) as 4 sin(x)

-\tan(3x) - tan(3x)

See more View less

Calculus Archives

Useful Calculus links

Differential Calculus AI
CalculusPop differential calculus AI solver that can handle a variety of differentiation problems. It...
Classroom: Differentiation from first principles
Differentiation from first principles is a method of finding the derivative of a function by using the...
Integral Calculus Playground
The "Integral Calculus Playground" is a sophisticated educational tool designed to help users practice...
Classroom: Differentiation of sine and cosine functions
The differentiation of sine and cosine functions involves finding the derivatives of these trigonometric...
Classroom: Differentiation of a Product
CalculusPopCalculusPop...
Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock

Calculus playground

Answer

Answer

Order of differentiation