Differentiate 4 sin(x)With Steps

Answer

calculus infography

Answer

Differentiation of a 4 \sin(x)

When differentiating a function with respect to a variable, one must apply the appropriate rules in calculus. In this case, we are tasked with differentiating the function 4 \sin(x) with respect to x.

To differentiate 4 \sin(x) with respect to x, we follow the basic rules of differentiation. The derivative of \sin(x) is \cos(x) , so the derivative of 4 sin(x) would be 4 \cos(x) .

Therefore, the differentiation of 4 \sin(x) with respect to x is given by:

\frac{d}{dx} (4 \sin(x)) = 4 \cos(x)

By applying the rule of differentiation for trigonometric functions, we have successfully differentiated the given function with respect to x.

You can also differentiate coefficient of x in the following form

Common functions

7

6x

x^{1/2}

2x^2

Exponential functions

-e^{-\frac{12}{7x}}

-3e^{2x}

Trigonometric functions

4 \sin (x)

-\cos(3x)

Logarithmic functions

4In9x

1. Find the derivative of the function -2x^{-\frac{1}{2}}.

Solution:

To find the derivative of a function in the form f(x) = ax^n, where a and n are constants, we use the power rule. The derivative is given by:

f'(x) = n \cdot a \cdot x^{n-1}.

Applying this rule to the given function, we have:

f'(x) = -\frac{1}{2} \cdot -2 \cdot x^{-\frac{1}{2}-1}</p><p>= x^{-\frac{3}{2}}.

Therefore, the derivative of -2x^{-\frac{1}{2}} is

x^{-\frac{3}{2}}.

2. Determine the derivative of e^{x}.

Solution:

The derivative of e^{x} is itself, as the derivative of

e^{x} is e^{x}.

This is a unique property of the exponential function e^{x}.

Therefore, the derivative of e^{x} is

e^{x}.

3. Calculate the derivative of 4\cos(9x).

Solution:
By applying the chain rule and derivative of cosine function, we have:

f'(x) = -4 \cdot 9 \sin(9x) = -36 \sin(9x).

Therefore, the derivative of 4\cos(9x) is

-36 \sin(9x).

4. Find the derivative of -3e^{\frac{8}{5}x}.

Solution:

Similarly to the derivative of e^{x}, the derivative of e^{\frac{8}{5}x} is itself times the constant \frac{8}{5}:

f'(x) = -3 \cdot \frac{8}{5} e^{\frac{8}{5}x} = -\frac{24}{5} e^{\frac{8}{5}x}.

Therefore, the derivative of -3e^{\frac{8}{5}x} is

-\frac{24}{5} e^{\frac{8}{5}x}.

5. Differentiate the function 4\sin(2x).

Solution:

Using the chain rule and derivative of the sine function, we get:

f'(x) = 4 \cdot 2 \cos(2x)= 8 \cos(2x).

Therefore, the derivative of 4\sin(2x) is

8\cos(2x).

1. \frac{d}{dx}\left(-2x^{-\frac{1}{2}}\right) = x^{-\frac{3}{2}}

2. \frac{d}{dx}\left(-e^x\right) = -e^x

3. \frac{d}{dx}\left(4\cos(9x)\right) = -36\sin(9x)

4. \frac{d}{dx}\left(-3e^{\frac{8}{5}x}\right) = -\frac{24}{5}e^{\frac{8}{5}x}

5. \frac{d}{dx}\left(5\ln x\right) = \frac{5}{x}

6. \frac{d}{dx}\left(2x^3\right) = 6x^2

7. \frac{d}{dx}\left(9e^{-2x}\right) = -18e^{-2x}

8. \frac{d}{dx}\left(7\sin(2x)\right) = 14\cos(2x)

9. \frac{d}{dx}\left(-4e^{5x}\right) = -20e^{5x}

10. \frac{d}{dx}\left(3\ln(4x)\right) = \frac{3}{x}

11. \frac{d}{dx}\left(-5\cos(3x)\right) = 15\sin(3x)

12. \frac{d}{dx}\left(6e^{-4x}\right) = -24e^{-4x}

13. \frac{d}{dx}\left(2\sin(5x)\right) = 10\cos(5x)

14. \frac{d}{dx}\left(8e^{2x}\right) = 16e^{2x}

15. \frac{d}{dx}\left(4\ln(3x)\right) = \frac{4}{x}

Previous Lesson
Next Lesson

Sample Expressions

For best result write

1 as 1

-1 as -1

x as x

-x  as -x

x^{1/2}  as x^(1/2)

x^{-1/2} as x^-(1/2)

-x^{1/2}  as - x^(1/2)

-x^{-1/2}  as - x^-(1/2)

-2x as -2x

2x^2  as 2x^2

-2x^2  as -2x^2

2x^{1/2} as 2x^(1/2)

2x^{-1/2} as 2x^-(1/2)

-2x^{1/2}  as -2x^(1/2)

-2x^{-1/2}  as -2x^-(1/2)

2x^{-1} as 2x^-1

-2x^{-1}  as -2x^-1

-x^{-1}  as -x^-1

x^{-1} as x^-1

x^2 as x^2

-x^2 -x^2

-x^{-2} -x^-2

2x as 2x

e^x as e^x

-e^x as -e^x

-e^{-x} as -e^-x

e^{2x} as e^(2x)

e^{-2x} as  e^-(2x)

-e^{2x} as -e^-(2x)

-e^{-2x} as e^-(2x)

e^{8/5x} as e^(8/5x)

e^{-8/5x} as e^-(8/5x)

-e^{8/5x} as -e^-(8/5x)

-e^{-8/5x} as -e^-(8/5x)

3e^x as 3e^x

3e^{-x} as 3e^-x

-3e^x as -3e^x

-3e^{-x} as -3e^-x

3e^{2x} as 3e^(2x)

3e^{-2x} as 3e^-(2x)

-3e^{2x} as -3e^(2x)

-3e^{-2x} as -3e^(-2x)

3e^{8/5x} as 3e^(8/5x)

3e^{-8/5x} as 3e^(-8/5x)

-3e^{8/5x} as -3e^(8/5x)

-3e^{-8/5x} as -3e^(-8/5x)

-\cos(x) as -cos(x)

4\sin(x) as 4 sin(x)

-\tan(3x) - tan(3x)

See more View less

Calculus Archives

Useful Calculus links

Differential Calculus AI
CalculusPop differential calculus AI solver that can handle a variety of differentiation problems. It...
Classroom: Differentiation of a quotient
The differentiation of a quotient involves applying the quotient rule, which states that the derivative...
Differentiate 5 With Steps
Learn about the concept of differentiation with constant 5 and how it can be applied in various mathematical...
Integral Calculus Playground
The "Integral Calculus Playground" is a sophisticated educational tool designed to help users practice...
Differentiate 3In5x With Steps
To differentiate the expression 3ln5x with respect to x, we will use the chain rule of differentiation....
Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
100% Free SEO Tools - Tool Kits PRO

Calculus playground

Answer

Answer

Order of differentiation